
U-Net Compression Using Knowledge
Distillation

Karttikeya Mangalam and Dr. Mathieu Salzmann

Master’s Semester Project, EPFL, Switzerland
karttikeyamangalam@gmail.com,
https://karttikeya.github.io/

Keywords: Model Compression, Knowledge Distillation, Dark Knowledge, U-
Net, Biomedical Segmentation

1 Introduction

1.1 Motivation

Recently, deep learning has achieved path breaking results on several computer
vision tasks. Neural networks have replaced many older ’traditional’ computer
vision techniques and have ushered in the era of large scale data driven learning.
State of the art models for many common vision tasks are fine-tuned and highly
optimized neural networks such as Image Recognition [3] (VGG16, VGG19), Hu-
man Pose estimation [4] (Stacked Hourglass Networks) and Segmentation [15]
(U-net). However, the increasing depth of such models also results in a higher
storage and runtime complexity, which restricts the deployability of such very
deep models on mobile and portable devices, which have limited storage and
battery capacity. Moreover, the large amount of hyper parameters also prohibit
proper understanding the learned representations.
Hence, exploring techniques that allow us to train a smaller model that is similar
in architecture to the original model but has significantly smaller number of pa-
rameters would allow us to overcome the above challenges. Additionally, for such
an attempt to be truly successful in reducing the network size (in terms of the
number of parameters) it should also achieve performance similar to the original
heavier model on benchmark datasets with minimal training time overhead.

1.2 Related work

Most neural network compression approaches fall in three broad categories:
weight quantization, architecture pruning and knowledge distillation. The first
approach attempts to compress by minimizing the space footprint of the network
by utilizing less space for storing the value of each parameter through value quan-
tization. Even with just as small of two-three bits per parameter, these methods
can approach state of the art accuracies [8][9].
Le Cun et al. [10] pioneer the approach of architecture pruning whereby they



2. PRELIMINARIES

train a full network and then they do away with the neurons with near to zero ac-
tivations. Later on, Han et al. [11] propose a method to jointly learn weights and
network connections and demonstrate an architecture pruning approach without
performance loss. The work presented in this report falls in the third category
of knowledge distillation. Approaches in this category typically train a heavier
network to start with and then use this ’teacher’ network to train a smaller
’student’ network through knowledge transfer. We discuss there approaches in
detail in the next subsection.

Knowledge Distillation First attempts in the direction of knowledge distil-
lation were made by Caruna et al. [6]. They present the algorithm MUNGE for
model compression and investigate the model complexity- RMSE error for MLP.
Later on, Hinton et al. [7] propose a more general technique for distilling the
knowledge of a network utilizing the predicted probability distribution of the
teacher model to train the smaller (student) model. This forms the basis of our
exploration and we will revisit this later. Other approaches such as Deep Model
Compression by Bushan et al. employ a noise based regularizer dependent on the
predictions of the larger model while training the student model. Bengio et al.
[12] propose an alternative knowledge distillation training approach that utilizes
intermediate deep representations learned by the teacher model in addition to
the final predicted probability distributions to train the student network. Also,
several application focused methods for knowledge distillation have been devel-
oped such as compression for face model identification [2], for object detection
[1] and face verification [13]. Recently, Lopes et al. propose a ’data-free’ knowl-
edge distillation procedure that utilizes on a small meta-database alongwith the
trained teacher model to train the smaller model agnostic to the large database
originally used to train the teacher model.

All the above three proposed approaches for model compression are largely
orthogonal to each other and can be employed simultaneously to achieve 5̃0x
model compression as demonstrated by Han et al. [14].

2 Preliminaries

In this section, we describe some of the architecture, conventions and datasets
upon which our work heavily relies upon.

2.1 The U-net Architecture

The original U-net architecture as proposed by Ronneberger et al. [15] is a fully
convolutional network with skip connections that comprises of a contracting path
and an expansive path. Kindly refer to Figure 1 for details. The original u-net
architecture comprises of channel depth of 64 at the first level that doubles each
time for 4 consecutive stages reaching 1024 at the bottom level and reduces back
to 64 in the top stage of the expansive part. Later when we introduce the batch

4



2. PRELIMINARIES

Fig. 1. Illustration of the U-net architecture. Each blue box corresponds to a multi-
channel feature map. The number of channels is denoted on top of the box. The x-y-size
is provided at the lower left edge of the box. White boxes represent copied feature maps.
The arrows denote the different operation [15].

normalization layer as described in Section 3.9 in the expansive part before the
ReLu activation. So, the operation denoted by the blue arrow in the above figure
becomes (conv 3x3, BN Layer, ReLU) instead of (conv 3x3, ReLU).

2.2 Dataset Used

Since, U-net is widely used for segmentation in biomedical images, we primarily
use the Mitochondria Segmentation dataset in Electron Microscopy stacks [16].
It represents a 5x5x5 micrometer section taken from the CA1 hippocampus re-
gion of the brain, corresponding to a 1065x2048x1536 volume. The resolution of
each voxel is approximately 5x5x5nm. It consists of two separate sub-volumes
for training and testing. Each sub-volume consists of the first 165 slices of the
1065x2048x1536 image stack. A sample image and it’s corresponding annotation
is shown in Figure 2. We pose the problem in the framework of binary segmen-
tation where white represents a pixel that is part of a cell’s mitochondria and
black represents all other pixels. Note that different images represent the same
3D structure of the brain viewed through different cross-sections. Alternatively,
to verify some of our results on another dataset, we have employed the Synapse
segmentation dataset in Electron Microscopy stacks [17].
Naturally, the problem facilitates a 3D deep learning approach but for the pur-

5



3. DISTILLING THE U-NET

poses of this work, we take a 2D approach, processing the slices(images) one by
one. The reason for the above design choice is that using 3D deep learning would
require require a major overhaul of the original U-net architecture thereby limit-
ing the use of such an effort to only 3D problems. In addition to this, even with
the 2D constraint several interesting observations are discovered which could
now be utilized for developing the 3D U-net in future.

2.3 Experimental Setup

Consider the training examples to be denoted by (xti, y
t
i) and the network’s

estimate of the output to be ŷti . Similarly, the testing examples to be denoted
as (xi, yi) and the network’s estimate of the output to be ŷi. Also, consider the
cross entropy loss function H: (RN×N ,RN×N )→ R to be defined as,

H(x, x̂) = −
∑
(i,j)

xij log(x̂ij) + (1− xij) log(1− x̂ij)

Moreover, suppose that the training losses are averaged over αt individual con-
secutive examples. Similarly, assume that the testing losses are averaged over
the entire testing dataset every nt training iterations and then βt of such aver-
ages are averaged. Also, assume that the testing set consists of ntest number of
examples. The reported training loss L∗

train is then described as follows:

L∗
train = min

k

1

αt

k+αt∑
i=k

H(yti , ŷ
t
i)

Let us denoted the testing loss at the training iteration i as Litest defined as,

Litest =
1

ntest

ntest∑
j=1

H(yj , ŷj)

where, ŷ are output of network’s final softmax layer after being trained for i
iterations. The reported testing loss L∗

test is then described as,

L∗
test = min

k

1

βt

k+βt∑
j=k

Ljnt

test

The values of the parameters αt,βt and nt are specified for each experiment
and are chosen so as to allow standardization across the work and meaningful
insights wherever possible. All the experiments are performed on a single Titan
X GPU with PyTorch as the DL framework and CUDA 8.0 backend.

3 Distilling the U-net

In this section, we describe our several attempts at distilling the U-net archi-
tecture, including both the failures and the successes. We draw fruitful insights
from our failures by promptly investigating and reporting the probable reasons
along with explaining the intuition behind the successful approaches.

6



3. DISTILLING THE U-NET

Fig. 2. A slice and it’s corresponding annotation from the Mitochondria Segmentation
in Electron Microscopy Dataset [16].

3.1 The Student Architecture

To come up with a suitable student architecture to use for in knowledge distil-
lation, we reduce the channel depth at the first stage of the U-net architecture
keeping the doubling pattern to be the same . In particular, we start with the
depth of 64 as in the original u-net and keep halving it each time until the per-
form worsens significantly. For ease of notation, we call a U-net architecture with
a channel depth of k in the first layer as the k-Unet. Referring to Table 1, we see
that the U-net works surprisingly well upto just 7% of it’s original parameter
(4-Unet). We also reconfirmed this result on the Synapse detection dataset as de-
scribed in Section 2.2. So, throughout this work, we use the 2-Unet/1-Unet as our
student model and the 4-Unet as the teacher model for knowledge distillation.
Observe that, this simple investigation in itself provides over 1̃3x compression
for the U-net.
Note that, the reason we tweak the channel depth keeping other model parame-
ters such as the kernel size and the number of stage the same is two-fold. Firstly,
reducing the number of stages in the architecture also reduces the reception field
of the CNNs, the loss of which cannot be gained from the additional transfer
knowledge from the teacher model. Secondly, the original architecture uses ker-
nel sizes of 2x2 & 3x3 and reducing them further is not possible. Hence we have

7



3. DISTILLING THE U-NET

Starting Channel Depth Test Loss Train Loss #Iterations

128 0.1170 0.0281 63,000

64 0.1021 0.0256 80,000

32 0.0871 0.0220 125,000

16 0.0822 0.0220 150,000

8 0.0830 0.0221 280,000

4 0.0974 0.0286 300,000

2 0.8227 0.3423 290,000

1 0.8337 0.3438 320,000

Table 1. Performance of different U-net architectures on varying the channel depth
in the first layer. The loss parameters used are αt = 5000, βt = 25 and nt = 500. The
reported number of iterations is where the minimum for the testing loss is achieved.

worked on reducing the channel depth, which is inversely proportional to the to-
tal number of learnable parameters, keeping other model parameters constant.

3.2 Vanilla Training of U-net: Memory issues

Data Augmentation Since, the training data is small relative to the model
complexity, it is supplemented through flipping the original image both horizon-
tally and vertically and also through elastic stretching. Since, elastic stretching
of an image is a stochastic process, it inherently creates a very large number
of unique images (practically unlimited) that have minor variations in between
them and can them be used to train the Unet.
A problem that the above augmentation procedure presents is that of storing
the teacher network’s predicted probability distribution P∗

t . Since on each run,
the U-net uses a different set of images to train owing to the stochasticity of
elastic stretching process, P∗

t cannot be stored beforehand to be used as ’soft’
labels for the student network but need to be generated in-situ during the train-
ing process. This requires loading the teacher U-net in the GPU memory while
training the student U-net and can present a memory issue with large models.

Overlap tile strategy U-net model is a fully convolutional network and thus
the memory footprint depends directly on the size of the image used. As discussed
in [15], during the training phase we process the image in blocks (patches of
the original image) that are augmented as described above and are treated as
separate image for all practical purposes even though they form parts of a larger
slice. During the prediction phase, these blocks are passed independently through
the network and then their corresponding predictions are stitched together to
form the complete output image. Refer to Figure 3 for an illustration of this
technique.

8



3. DISTILLING THE U-NET

Fig. 3. Illustration of the overlap tile strategy for saving memory on large images.
The blue area is the input for prediction in the yellow area. Mirroring is used for
interpolation in missing data. [15]

3.3 SoftMax temperature

Since we are employing the Unet as a classifier, the final layer is the ”softmax”
layer that is typically used for classification in neural networks. It computes the
probability qi for each class, given it’s corresponding logit zi, by comparing zi
with other logits as follows [7],

qi =
exp(zi/T )∑
j exp(zj/T )

Usually, the softmax temperature T is set to 1 both during the training and the
testing phases for an architecture. However, if need be, this temperature can be
changed to a higher value than 1 to produce a ’softer’ probability distribution.
Also, as noted in [7], using a value other than 1 also scales the gradients by
1
T 2 and so the corresponding soft loss needs to be multiplied by T 2 when being
added to the hard loss for guided training as described in Section 3.7.

3.4 Distillation with soft targets

We follow the procedure described in [7] for distillation using the predicted prob-
ability distribution of the teacher network. First, the teacher network, 4-Unet is
trained from the raw mitochondria dataset with the softmax temperature set to
1. Further, teacher network’s predicted probability distribution, P∗

t , generated
at a softmax temperature Ttransfer > 1 is used to train the student network.
We use the cross entropy loss between P∗

t and that probability distribution pre-
dicted by the student network,P∗ (See 2.3 for details) as the teaching signal. The
student network is the 2-Unet being trained from scratch with P∗

t as soft labels

9



3. DISTILLING THE U-NET

Ttransfer 0.1 0.25 0.5 1 2 4 5 7 10 15 20

Test loss Div. Div. Div. 0.111 0.480 0.104 0.610 0.481 0.480 0.480 0.134

#Iterations - - - 15,000 15,000 50,000 50,000 9000 14,000 14,500 48,800

Table 2. Cross entropy test loss for soft training of 2-Unet. The teacher model is 4-
Unet trained for 300,000 iterations with 0.0910 as the test loss. The above reported
losses are the minimum across the test losses with no averaging. Div. indicates that
the training diverged on several hyper parameter combinations.

with the softmax temperature Ttransfer same as that of the teacher model. After
finishing the training for 2-Unet, it’s temperature is set back to 1 for testing and
prediction. Refer to Table 2 for details.

3.5 Stochasticity in Training the 2-Unet

The above results indicate extremely low correlation between network’s perfor-
mance and softmax temperature used in the distillation process which is odd and
warranted further investigation. The results of re-runs of the above experiment
are reported in Table 3. As the results indicate, the distillation procedure results
seems to be stochastic and the results are non-repeatable. For example, none of
the results remain constant throughout the three trials except for temperature
as 2, when the 2-Unet gets stuck at the 0.48 loss each time. This led to the
suspicion that the cases where 2-Unet actually trains are not due to the distilla-
tion procedure but because of the random good initialization of the model. To
further confirm our suspicion, we re-train the 2-Unet multiple times without su-
pervision of the teacher model directly from the Mitochondria dataset. Referring
to Table 4, observe that three out of the ten times, the 2-Unet trains upto the
best possible performance while the rest seven times it completely fails to train
and does no better than a randomly initialized model. Thus, we conclude that
training the 2-Unet is an inherently stochastic process and the final performance
depends heavily on the initialization weights of the model. So, this conclusion
also validates our suspicion that the seemingly bizzare pattern observed in Table
2 is nothing but an artifact of this stochasticity and has nothing to do with the
softmax temperature itself.

Physical significance of 0.48 loss As can be observed in Table 3, whenever
the distillation procedure fails, it gets stuck the 0.480 test loss. Physically, this
means that the network’s prediction for each pixel to belong to class i is exactly
the percentage of class i in the overall dataset and is actually independent of
the pixel’s value and it’s surroundings. In particular, in our case, the predicted
probability distribution P∗ takes the form,

P∗(xij) =

{
0.947 xij ∈ background

0.053 xij ∈ foreground

10



3. DISTILLING THE U-NET

Ttransfer
Testing Loss (avg) Testing loss (min)

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

1 0.481 0.212 0.483 0.480 0.210 0.480

2 0.488 0.488 0.485 0.480 0.480 0.480

3 0.482 0.482 0.223 0.480 0.480 0.215

5 0.123 0.482 0.489 0.097 0.480 0.480

6 0.151 0.525 0.482 0.126 0.496 0.480

10 0.120 0.482 0.482 0.093 0.480 0.480

15 0.209 0.482 0.491 0.201 0.480 0.480

Table 3. Three trials of distillation with 2-Unet as the student model. The parameters
for average test loss are βt = 25 and nt = 500. The bold values indicate breaking the
0.48 test loss barrier.

for the Mitochondria segmentation dataset in Electron Microscopy stacks (refer
to section 2.2).

An unexpected benefit While the distillation procedure seems to provide no
more chances of convergence than pure random chance, when the training does
converge, it converges much faster in teacher guided training than the vanilla
training process. This effect can be seen on comparing iteration values between
Table 2 and Table 1.. Around 20x speedup is achieved in convergence time by
using the teacher model for guided training (15,000 iterations in teacher guided
training vs. 300,000 iteration in vanilla training).

3.6 Soft-training the 1-Unet

To avoid the problem of re-running the experiments to deal with random initial-
ization artifacts of the 2-Unet we also experimented with the 1-Unet on similar
lines as described in Section 3.4. On higher temperatures (above 20) the 1-Unet,
with less than 0.5% of the original Unet architecture, manages a performance
of around 0.255 on the testing dataset guided by the soft labels produced from
the 4-Unet trained for 300,000 iterations. We also experimented with the KL-
divergence loss function instead of the usual cross entropy function. However,
this swap yielded no extra benefits (the best test loss remained around 0.25) and

Trial Number 1 2 3 4 5 6 7 8 9 10

2-Unet 0.156 0.142 1.371 0.138 1.376 1.379 1.380 1.381 0.223 1.384

1-Unet 1.37 1.35 1.36 1.33 1.38 1.38 1.36 1.33 1.30 1.31

Table 4. Reruns of the smaller unet architectures with the vanilla training procedure.
The reported numbers are the average cross entropy losses calculated on the testing
dataset with the parameters βt = 25 and nt = 500.

11



3. DISTILLING THE U-NET

Ttransfer Test (avg.) Test (min) Training Loss (Hard) Training Loss (Soft)

2 0.490 0.480 0.268 0.167
5 0.505 0.481 0.267 0.239
10 0.506 0.480 0.268 0.305
15 0.507 0.479 0.270 0.326
20 0.507 0.480 0.271 0.334

Table 5. Network performance of the 2-Unet guided by both soft and hard labels. The
teacher model is 4-Unet trained for 300,000 iterations. The averaged test loss has the
averaging parameters βt = 25 and nt = 500. The training soft losses are reported after
multiplying by T 2

transfer.

hence, we continued with the cross entropy loss for the rest of the work. Here
too, as mentioned in the above section, the convergence to 0.250 loss was much
faster (1̃5x) with the teacher signal than without it (vanilla training).

3.7 Mixed Distillation

As outlined in [7], we use a training objective that combines the cross entropy
loss between P∗

t and P∗ and the hard loss between P∗ and the actual binary
labels. As described in section 3.3, the gradients from the soft loss are scaled
by 1/T 2

transfer the soft loss needs to be multiplied by T 2
transfer for the losses

to be comparable in magnitude. Referring to Table 5, we observe that even
though the mixed distillation procedure doesn’t solve the 0.480 loss problem, it
highlights the generalization issue present in the training process. Observe that
even though the training losses are much lower (around 0.270), the network is
not able to generalize it’s learned knowledge to the test set. This hinted at using
some sort of regularization method such as the Batch Normalization layer as
described in Section 3.9.

3.8 Sequential Distillation: A failed attempt

In analogy of the parallel and sequential processes, we also try out the sequential
version of the mixed distillation as described in the above section. In particular,
we start with a smaller network (1-Unet) trained partially through the soft
distillation procedure (Section 3.4). Now this partially trained network is further
trained in the vanilla way using only the hard labels. Referring the results 6, we
observe that such a procedure fails miserably and the testing loss blows very
fast once the hard training of the pre-trained model is started. Although, this
experiment clearly fails, it hints the hypothesis that the direction for optimizing
the soft and the hard loss are very different in general and only when they are
considered in parallel as in [7, 16] does the distillation procedure actually work.
Also, remarkable is the rate at which the test loss blows up to much higher
values than 0.480 when starting the hard training. Within a few hundreds of

12



3. DISTILLING THE U-NET

Starting Model
Test Loss

Loss #Iterations Ttransfer

0.48 10,000 5 0.883

0.48 20,000 5 0.595

0.550 20,000 10 0.497

0.480 10,000 20 0.590

0.480 20,000 20 0.498

Table 6. Cross entropy loss for 1-Unet trained through sequential distillation. The
averaging parameter for the test loss are βt = 25 and nt = 1000. The reported loss for
the starting model is the test loss calculated using βt = 25 and nt = 500.

iterations, the testing cross entropy loss increases from 0.5 to over 1.20 for all
the mentioned cases in Table 6.

3.9 Batch Normalization layer

As discussed in Section 3.7, we introduce the batch normalization layer [18] for
introducting stronger regularization in the network. Although, this increases the
number of learnable parameters by a small amount, the benefit in network perfor-
mance far outweigh this minor drawback. We introduce the Batch Normalization
layer in the expansive part of the architecture before the ReLU activation. Refer
to Section 2.1 and Figure 1 for details.
We test the effect of introducing the batch normalization layer on the 4-Unet
with vanilla training and find that it significantly improves the network per-
formance from 0.0930 to 0.0727 using the cross entropy loss as metric on
the test set under identical averaging settings, βt = 25 and nt = 500. Referring
to the loss curve in the figure 4, we report that this extra kick in network’s per-
formance comes at the expense of a 5x longer training time (from 300,000
iteration without the BN layer to around 1.5 million iterations with the BN
layer).
Similar improvements of around 22% in the cross entropy loss are also
achieved on the 16-Unet and the 32-Unet architectures. This makes a strong
case for the use of the Batch Normalization Layer in all future uses of the archi-
tecture.

13



3. DISTILLING THE U-NET

Fig. 4. The test loss curve for training the 4-Unet with the BN layer for 3.6 million
iterations. The averaging setting for the reported curve is βt = 500 and nt = 300 to
allow a smoother graph. The lowest test loss achieved is 0.07660 near 1,600,000 training
iterations and takes around 2.2 days to train on a single Titan X GPU.

3.10 Making It Work: Batch Normalization & Class weights

Motivated from our experience from Section 3.6 - 3.9, we employ two techniques
to overcome the 0.48 loss local minima. First, we introduce the Batch normal-
ization layer in the U-Net (see Section 3.9) for both the teacher and the student
model. This provides regularization to the network improving the generaliza-
tion error as observed in Table 5. Secondly, we use class weights to penalize the
network more on predicting wrong on the minority class as described in [15].
Combined, these two improvements enable distilling the 2-Unet to performance
similar to 64-Unet. Moreover, with these enhancements the stochastic effects
of initialization on the 2-Unet performance are also overcome and different re-
runs of the same experiments yield consistent results (in contrast to without
distillation training as reported in Table 3).

Final Results Using only soft labels, U-net is trained to a cross entropy loss of
0.1340 (averaged over 3 trials) corresponding to an intersection over union score
of 0.752 at Ttransfer = 5. With same condition, but using both the soft and the

14



4. CONCLUSION

hard labels (Section 3.7), we could get to 0.135 cross entropy loss, equivalent to
an Intersection over Union score of 0.759. Notably, while both the methods pro-
duce similar final results, the convergence rate with mixed distillation (∼100,000
iterations) is ∼1.5x faster than with only soft labels (∼155,000 iterations). To
conclude, using the method described above, a much smaller version of U-net
(2-Unet with ∼1% of the original parameters) can be trained to perform similar
to the original 64-Unet, both in terms of cross entropy loss (0.135 for 2-Unet vs.
0.102 for 64-Unet) and the intersection over union score (0.759 for 2-Unet vs.
0.804 for 64-Unet).

4 Conclusion

We successfully demonstrate a procedure for compressing the U-net architecture
by over ∼100x to just 1% of the original parameters (31,042,434 trainable
parameters fo 64-Unet to 30,902 in 2-Unet) with minor decrease in performance,
both in terms of cross entropy loss (0.135 for 2-Unet vs. 0.102 for 64-Unet)
and the intersection over union score (0.759 for 2-Unet vs. 0.804 for 64-Unet).
Additionally, we introduce the batch normalization layer in the architecture for
regularization. We also discover several interesting patterns and make important
observations that improve the architecture in other ways, some of which are
briefly listed below.

– The U-net model can be significantly compressed without any extra effort!
(Section 2.1)

– Challenges that data augmentation poses for Distillation. (Section 3.2)
– The stochastic performance degradation in Unet. (Section 3.5)
– Faster convergence rate with teacher guided training (Section 3.5)
– The dynamics of sequential and parallel guidance of soft and hard labels

(Section 3.7/3.8)
– Performance boost from the Batch Normalization layer (Section 3.9)

Acknowledgement

I would like to thank Dr. Mathieu Salzmaan for mentoring me for the project,
Dr. Pablo Marquez Neila for his valuable advice during key junctures and
Prof. Pascal Fua for providing me with an opportunity to work on the project
and granting the access to lab’s computing resources. It has been a tremendous
learning opportunity to take a closer look into the workings of deep learning.
Thanks a lot!

15



4. CONCLUSION

References

1. Learning Efficient Object Detection Models with Knowledge Distillation, Guobin
Chen, Wongun Choi, Xiang Yu, Tony Han, Manmohan Chandraker, 2017

2. MobileID: Face Model Compression by Distilling Knowledge from Neurons, Ping
Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang and Xiaoou Tang, 2016

3. Simonyan, Karen, and Andrew Zisserman. ”Very deep convolutional networks for
large-scale image recognition.” arXiv preprint arXiv:1409.1556 (2014)

4. Newell, Alejandro, Kaiyu Yang, and Jia Deng. ”Stacked hourglass networks for
human pose estimation.” European Conference on Computer Vision. Springer In-
ternational Publishing, 2016.

5. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. ”U-net: Convolutional net-
works for biomedical image segmentation.” International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015.

6. Buciluǎ, Cristian, Rich Caruana, and Alexandru Niculescu-Mizil. ”Model compres-
sion.” Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, 2006.

7. Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. ”Distilling the knowledge in a neural
network.” arXiv preprint arXiv:1503.02531 (2015).

8. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In European
Conference on Computer Vision, pages 525–542. Springer, 2016.

9. Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint
arXiv:1605.04711, 2016.

10. Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D
Jackel. Optimal brain damage. In NIPS, volume 2, pages 598–605, 1989.

11. Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and
connections for efficient neural network. NIPS, pages 1135–1143, 2015

12. Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio, Y. (2014).
Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550.

13. Model Distillation with Knowledge Transfer from Face Classification to Alignment
and Verification,Chong Wang, Xipeng Lan and Yangang Zhang, 2017

14. Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. Interna-
tional Conference on Learning Representations (ICLR), 2016

15. Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional
networks for biomedical image segmentation. In International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention (pp. 234-241). Springer,
Cham.

16. A. Lucchi, K. Smith, R. Achanta, G. Knott, P. Fua, Supervoxel-Based Segmen-
tation of Mitochondria in EM Image Stacks with Learned Shape Features, IEEE
Transactions on Medical Imaging, Vol. 30, Nr. 11, October 2011.

17. C. J. Becker, K. Ali, G. Knott and P. Fua. Learning Context Cues for Synapse
Segmentation, in IEEE Transactions on Medical Imaging, vol. 32, num. 10, p. 1864–
1877, 2013.

18. Ioffe, Sergey, and Christian Szegedy. ”Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift.” International Conference on
Machine Learning. 2015.

16


