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MOTIVATION

Prior work on Characterizing generalization trajectories of deep networks

U-shaped validation error explained explained with classic bias-variance tradeoff (Vapnik, 1998)
Generalization Error decreases until saturation, then overfitting sets in
DNNs Learn simple pattern first before memorizing (Bengio et al., 2017)

Information Bottleneck: DNNs learn compressed representations of input that maximize the mutual
information between the input and the prediction task in a Markov chain (Tishby & Zaslavsky, 2015)

Input domains consist of a subsets of both task relevant and task irrelevant information and
representations first learn to effectively compress the task irrelevant information (Saxe et al. 2018)
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models with as different parameterizations and
architectures as shallow machine learning models and
deep networks? And hence is attached to the example
independently of a model?

* If we are to investigate the examples that a DNN learns

RESEARCH Q UESTIONS to correctly classify over the training batches, do we
INVESTIGATED observe a shallow learnable to deep learnable regime

change!?

* Are there examples that are shallow learnable but for
some reason a DNN with a far better overall accuracy

fails to classify? At the heart of this quest is to
understand if shallow learnability is a good proxy for the
(classification) easiness of an example.
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* Given a trained classical machine learning model M and a randomly initialized deep neural network D,
we propose to track the training trajectory of D in the following way:

* After every training step calculate the contingency matrix T on the validation/test set:

M incorrect | M correct

To4

TO 0
D correct T1 1

# test examples that M classifies correctly but
D after that training step makes a mistake on

D incorrect
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METRICS TRACKED

* Accuracy of D after each training step and Accuracy of M are straightforward:

To1+ T11
T11+ Too + T10 + Toq

T10+T11
To1 + T114 + T19 + Tpo

Accuracy (M) = Accuracy (D) =

* Marginal Accuracies of D on M-correct (R,) and M-incorrect (R_) subsets can be tracked :

_ T4 R Tio
+ T11+To B T10+Tho

* Finally, the Ratio of marginal accuracies R

T11Th0
T71T10+T11Too+To1T10+To1T00

Ri=
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DATASETS & MODELS

e Datasets: ® MNIST e CIFARIO e CIFARIOO

* Classical Machine Learning Models:

* SupportVector Machine with RBF Kernel
* Random Forests with early stopping

MNIST CIFARI1O CIFAR100

* Deep Learning Models:
SVM 97.92% 40.08 % 14.42 %
Random Forests 96.14% 35.86 % 14.26 %
22 Layer SN 98.8% 95.04% 77.78 %
. () . (4 . ()
* DenseNet 12| Deep Network 5 1.ver CNN)  (DenseNet121) (ResNet 101)

e ResNet |01

Final maximum accuracies achieved by these classifiers



KEY OBSERVATIONS

* Across all the {Dataset, Deep Learning Model (D), Machine Learning model (M)} triplets, the ratio of
accuracies retains a right skewed unimodal shape with a sharp peak.
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'f SVM-correct to SVM-wrong subsets | SVM-correct to SVM-wrong subsets
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for {CIFARIO, D = DenseNetl2|, M = SVM-RBF} R (Ratio of Accuracies)

for {MNIST, D = 2 layer CNN , M = Random Forest}
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accuracies retains a right skewed unimodal shape with a sharp peak.

* Other reasonable shapes that did not happen:

A more or less constant ratio around |.0
—

M-correct and M-incorrect examples are irrelevant to generalization of D

Or,

A steady rise from 1.0 to a final value (not |.0) with no maxima
{ “
M-correct are easier to generalize to but are learnt concurrently
with the M-incorrect examples



KEY OBSERVATIONS

* Across all the {Dataset, Deep Learning Model (D), Machine Learnring model (M)} triplets, the ratio of
accuracies retains a right skewed unimodal shape with a sharp peak.

* The Ratio of accuracies does start from 1.0 (random initialization) but peaks rapidly (sometimes as fast
as after less than one fifth of the training epoch), sharply and very slowly settles down to the final
value not equal to 1.0
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KEY OBSERVATIONS

* Across all the {Dataset, Deep Learning Model (D), Machine Learnring model (M)} triplets, the ratio of
accuracies retains a right skewed unimodal shape with a sharp peak.

* The Ratio of accuracies does start from 1.0 (random initialization) but peaks rapidly (sometimes as fast
as after less than one fifth of the training epoch), sharply and very slowly settles down to the final
value not equal to 1.0
* This implies that even after multiple hundreds of epochs and at convergence, M — correct test

examples are more often correct than M — incorrect examples.

0.7

os) | T T | R, (Accuracy of D on M-correct),
TTRTRE..id | Overall Accuracy (combined) and R_

(Accuracy of D on M-incorrect) for
{CIFARI00, Resnetl0I, SVM} triplet
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KEY OBSERVATIONS

* Across all the {Dataset, Deep Learning Model (D), Machine Learnring model (M)} triplets, the ratio of
accuracies retains a right skewed unimodal shape with a sharp peak.

* The Ratio of accuracies does start from 1.0 (random initialization) but peaks rapidly (sometimes as fast
as after less than one fifth of the training epoch), sharply and very slowly settles down to the final
value not equal to 1.0

* This implies that even after multiple hundreds of epochs and at convergence, M — correct test
examples are more often correct than M — incorrect examples.

* Even after convergence Tj; is non zero (ie there exists examples that M classifies
correctly but D gets wrong) on all M, D and all datasets except MNIST.



CONCLUSION

This infographic summarizes our observations succinctly

Step O

Random Initialization
Equal number of +& -

Oval represents the test set. +/- represent the test examples correctly/incorrectly classified for the shallow learning
model. Finally, Golden(Gray) represents the region correctly(incorrectly) classified by the deep learning model.
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model. Finally, Golden(Gray) represents the region correctly(incorrectly) classified by the deep learning model.
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What characterizes the generalization process of a
deep learning network as training progresses? * Datasets:
p & g prog : To study the phenomenon on a wide range of examples we perform
experiments on:

© MNIST e CIFAR10 e CIFAR100

o
<

Generalization error decreases first then overfitting sets in
U-shaped test error curve explained by Bias-Variance tradeoff [1]
DNNs learn simple patterns first before memorizing [2]

Input domains consist of a subsets of both task relevant and task
irrelevant information and representations first learn to
effectively compress the task irrelevant information [3]

Core Questions Investigated

«¢ Is the notion of easiness for classification same for models with
as different parameterizations and architectures as classical
machine learning models and deep networks the same? And
hence is largely related to the example independently of model?
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+¢ Classical Machine Learning Models:

To compare the learning process against different classical machine learning
models we use the following models:

® Support Vector Machine (RBF Kernel) e Random Forests

¢+ Deep Learning Models:

We choose diverse network architectures to account for different inductive
biases like skip connections, dense networks etc. and also according to the
dataset simplicity and size. With these considerations, we study the
generalization process of the following three deep learning networks:

% As training progresses, is there a shallow learnable to deep

® 2 layer Convolution Neural Network (MNIST)
learnable regime change viewed through the test set?

o DenseNet 121 (CIFAR10)
o ResNet 101 (CIFAR100)

< Are there examples that are shallow learnable but for some Note that each DNN is compared against both the ML models.

reason a DNN with a far better overall accuracy fails to classify?
Results & Observations

L «+ Key Observations:

{ * Ry has aright skewed unimodal shape. Of the two subsets of testing data,

\ M-correct and M-incorrect were completely irrelevant for generalization
process of D, R, would stay identically at 1.

* Instead, the observed peak indicates that D learns M-correct examples
much earlier in the training than M-incorrect. Then slowly over the epochs
generalized to harder M-incorrect set.

* Plots of Ry, R_ (middle row) validate this observation where R, can
sometimes be sometimes be as high as 60% where the overall accuracy is
still only 20% and R_ is still around 15%.

entire test set littered with + and — which denote M correct and incorrect

\ examples. Finally, golden color denotes the region D classifies correctly and gray

Ak b s

denotes the incorrect region.
Step 0 Step 10

2 Step 0 p 1 Step 50 Step 1000 Final Step
Figure 1. Various metrics tracked as training progresses with M as Support ,'Qﬁ’ Cooo ‘*,/".', AP ?’ e .’(" e

Vector Machine . Plots of R+ (Top Row), Marginal Accuracies (R, R_) & - o) & A e,

(Middle Row) and T (Bottom Row) on the pairs of {MNIST , CNN} (Left Col), - RS- 7 - -

Peak + to — ratio
in leamt examples

{CIFAR10, DenseNet121} (Middle Col) & {CIFAR100, ResNet101} (Right Col). _Random Initialization Rapid leaning of

Slow generalization —more prevalent in
Equal number of + and -+ with few - learnt

to-examples  not learnt set than +

Tracking the Learning Process
Traditionally, generalization performance on a held out set is tracked.

Given models M and D we propose to keep track of the contingency matrix T
as training of D progresses.

N X M incorrect M correct
Several other interesting
r?etrncs are obtained from T DIneaTect TOO T01
%+ Accuracy
Accuracy of models D and M can be
found simply as: D correct Tio Ti1
Tor+ Ty T10+T1y
Accuracy M) = m———— Accuracy (D) =
¥ (M) T11+Too+ T10 + Tor oy (D)

To1 +T11+T10 +Too

¢+ Marginal Accuracy
Accuracy of D on subsets that M classifies correct (R, ) & incorrect (R_)

T,
R - 11

+ Ty +To1
** Ratio of Accuracies
Ratio of marginal accuracies Ry is also obtained which serves as a measure of how the
correctly classified by D overlap with the those classified by M.

Tio
T10+Too

R
R.= 2
£~ R

R_=

i

Conclusion - = :

The following infographic succinctly expresses our findings. The Oval denotes the Mo

R ST VIRERI IV

Equivalent Results to Figure 1 with M as Random Forests.
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Please come to our poster for a
closer look at the findings.

Our paper can also be found
here: http://bit.ly/icml19

The code is also available at:
https://github.com/karttikeya/Shallow_to_Deep
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