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Objective  
 
For computers, to interact with humans, it is essential for them to possess the skill to recognise 
human emotions. Human beings express their emotions in various ways through their gestures, 
their speech and most importantly through their facial expressions. Being motivated by this 
fascinating problem to recognise human emotions through their facial expressions, we decided 
to explore some of the ways this problem can be solved and tried to create our own model for 
emotion recognition with the help of standard machine learning algorithms. 
 
The aim of our project is to do a comparative study between two approaches in which the 
features are generated in two different ways for the same image. In our first approach, Neural 
Networks(NN) are used in our dataset, and the final layer weights are used as the features and 
in our second approach, features are generated using Google Cloud Vision API. After feature 
generation, we will input these features to our classifying algorithms i.e. Support Vector 
Machines, Naive Bayes, K-NN, Decision trees, Decision trees, decision trees, bagged trees and 
linear discriminant analysis and hence do a comparative study. 
 
We have approached the problem as a supervised classification problem aiming to compare 
different existing standard techniques. The seven basic emotion classification categories are 
Happy, Surprise, Sadness, Anger, Disgust,Fear and neutral. Our primary method to solve this 
problem involves extracting features from a set of labeled facial images, using the features and 
the labels to train our model and then finally predicting the test data using that model. As far as 
the dataset is considered we are using SFEW 2.0 database( from Static Facial Expression 
Recognition sub-challenge pertaining to the more general Emotion recognition in the Wild 
challenge).It contains screens from many Hollywood movies from varying genres. These 
screens, however, are uncropped for the faces. There are 178 images for Anger,66 images for 
Disgust,98 items for Fear,198 images for Happy,150 images for Neutral,172 images for Sad and 
96 images for Surprise totaling 958 images for training. Also, there are 436 images across 
different categories for Validation.Finally, there are 372 images for Testing giving a total of 1766 
images in the dataset and a size of ~2.1 GB uncompressed. 
 

 



 
 
 
 
 
 
 

 
Literature Survey 

 
We first carried out literature survey of the techniques implemented on the dataset, especially 
bayesian learning and SVM. The Bayesian learning approach allows us to classify the data 
based on the a priori distribution of the training data. We studied the work of Cohen et al. and 
Sebe et al. , which provided us with details of using the bayesian approach in emotion 
recognition. Our aim is to finally classify the test data based on the distributions learned from the 
training data. The easiest approach to this is the Naive Bayes method. While reading the 
literature for the Naive Bayes method we came across two different distribution to model our 
data on, namely, the Gaussian distribution and Cauchy distribution.The studies reported 
accuracies upto 80% in person dependent results and 63% in person independent results in 
case of Naive Bayes Classifier. 
  
We studied the work of  Hsu et al. and Melanie Dumas ,which provided us a comprehensive 
study of using  Support Vector Machines for emotion recognition. It comprises of implementing 
SVM in two different ways as binary classification and multi-class classification for four different 
cases of kernels namely linear, polynomial, radial basis and sigmoid. In binary classification, it 
has ‘one against all’ classification for the 6 classes of emotions i.e we will select one class and 
then classify each example as belonging to that class or not. We give positive 1 score if the 
example belongs to that class and negative 1 score if the example does not belong to that class, 
ultimately we take the mean of scores in all 6 classifications. In the case of multi-class 
classification, it has ‘one against one’ classification for all the 6 classes, hence we generate 15 
classifiers where each example is compared against two different classes and in each 
classification, we increase the counter for that particular class and take the class with highest 
counter value at the end. It uses the LIBSVM package for multi-class classification which 
provides two formulations for SVM namely C-Support Vector Classification (C-SVC) and 
nu-Support Vector Classification (nu-SVC). It then compares between these two formulations of 
SVM. 
 
In the research paper, it was found that binary classification proved better than multi-class 
classification in all four cases of kernels. Also, in both the cases, linear kernel achieved better 
results than other kernels. For the case of binary classification, all different cases of kernels led 
to almost same results. In the case of multi-class classification, there is variation in accuracy for 
using different types of kernels and the sigmoid ends up having largest accuracy in this case, 

 



which is slightly higher than the linear kernel. Apart from this, in the multi-class classification 
problem, C-SVC was observed to have better results than nu-SVC. 
 
 
 
 
 
 

Methods and Techniques 
 
In our first approach, we have implemented a  two layer neural network that generates the 
features which are given to our classifying algorithm. It has Rectified Linear Unit as activation 
function, L-2 regulariser and  decreasing learning rate with every best iteration. Initial learning 
rate=0.5 and lambda=0.03,  these were found by tuning on validation dataset and are in no 
sense the most optimum choice. 
 
In second approach, we used the train aligned faces of our dataset and extracted features 
through Google Cloud Vision API. We wrote scripts in python to request Google Cloud Vision 
API for features and then we did data cleaning using python scripts and obtained the features in 
required form. The features we obtained are landmark points like x,y and z coordinates of 
various parts of the face like upper left eye corner, lower right eye boundary, etc.  We used 
these features to train our classifying algorithms. 
 
The classifying algorithms that we used are: 
 
1 - Support Vector Machines  
Support Vector Machines learn a hyperplane that classifies the data and also maximises the 
margin. For multiclass classification, there are many ways to do it and here we have done it as 
one against all classification. We have done analysis for various cases of kernels and tuned the 
hyper-parameters C and gamma to achieve max accuracy. 
  
2 - K Nearest Neighbours  
In this approach we classify unlabeled data by looking at its K nearest neighbours and assigning 
it the value of the majority label amongst those K neighbours. We varied the value of K to 
achieve maximum accuracy which was achieved for K=6. 
 
3 - Naive Bayes  
Naive Bayes approach basically assumes the data to be coming from some probability 
distribution(in our case we have assumed it to be Gaussian). The it tries to find these 
distributions on the basis of the labeled data available to us. When a new point is to be 
classifies we perform a MLE estimation of the label by using the Bayes formula. The most 
important thing about the Naive Bayes classifier is that it assumes all the features to be 

 



independent, so the overall conditional probability can be written as the individual conditional 
probability of all the features. 
 
4 - Decision Trees 
A decision tree is a flowchart-like structure in which each internal node represents a "test" on an 
attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of 
the test and each leaf node represents a class label (decision taken after computing all attributes). 
The paths from root to leaf represents classification rules. 
 
5- Bagged Trees 
Individual decision trees tend to overfit. Bootstrap-aggregated (bagged) decision trees combine 
the results of many decision trees, which reduces the effects of overfitting and improves 
generalization.  
 
6- Linear Discriminant Analysis 
Linear discriminant analysis (LDA) is a method used in statistics, pattern recognition and machine 
learning to find a linear combination of features that characterizes or separates two or more classes 
of objects or events. The resulting combination may be used as a linear classifier, or, more 
commonly, for dimensionality reduction before later classification. 
 

Experimental Results  
 

 Google Cloud Vision API approach: 
 
All the accuracies are reported are mean test accuracy for 5 iterations 
 
SVM 
 

● Linear Kernel:   39-40 percent  ( C  = 3.0 ) 
● Polynomial Kernel:                 30-31 percent  ( C  = 3.0 ) 
● RBF Kernel:    37.9 percent    ( C  =10^7 ) 

Naive Bayes:    16  percent  

K-NN:    25 percent      ( at K=6 ) 

Decision Trees    31 percent  
 
Bagged Trees    33 percent  
 
Linear Discriminant Analysis   42 percent 
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Conclusion 
 
This project has been a really good learning experience for all of us. We worked on almost 
everything from processed dataset selection to feature generation and then applying machine 
learning algorithms.  A lot of our time went out in selecting a relevant processed dataset. We 
were searching for a pre trained CNN dataset so that we can directly do the part of generating 
features from the CNN dataset but we could not find any pre trained CNN datasets. We 
obtained one such dataset SFEW 2.0, but the processed featured in it were  Pyramid Histogram 
Oriented Gradients ( PHOG ) and Local Phase Quantisation ( LPQ ) features. We tried to 
understand how we can use these PHOG and LPQ features for performing classification 
through SVM and other methods but we could not succeed. So, we stopped searching for more 
pre trained CNN datasets and decided to train CNN on our own. But we encountered some 
problems during training CNN, so ultimately we  ended up training our own neural network 
made up of three layers on this dataset.  Hence we all got a good exposure in terms of working 
with Neural Networks though this project. Also, this project provided a good exposure in terms 
of processing features obtained for  purposes of effective classification. The Google Cloud 
Vision API generated a lot of features and then we removed many features which were not 
required. 
 
Apart from it, this project we applied many concepts of machine learning learnt in course and it 
gave a practical experience of dealing with problem of high bias, imbalanced data,etc. 
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