
Human Emotion Recognition from
Static Images

 FINAL PROJECT REPORT

Objective

For computers, to interact with humans, it is essential for them to possess the skill to recognise
human emotions. Human beings express their emotions in various ways through their gestures,
their speech and most importantly through their facial expressions. Being motivated by this
fascinating problem to recognise human emotions through their facial expressions, we decided
to explore some of the ways this problem can be solved and tried to create our own model for
emotion recognition with the help of standard machine learning algorithms.

The aim of our project is to do a comparative study between two approaches in which the
features are generated in two different ways for the same image. In our first approach, Neural
Networks(NN) are used in our dataset, and the final layer weights are used as the features and
in our second approach, features are generated using Google Cloud Vision API. After feature
generation, we will input these features to our classifying algorithms i.e. Support Vector
Machines, Naive Bayes, K-NN, Decision trees, Decision trees, decision trees, bagged trees and
linear discriminant analysis and hence do a comparative study.

We have approached the problem as a supervised classification problem aiming to compare
different existing standard techniques. The seven basic emotion classification categories are
Happy, Surprise, Sadness, Anger, Disgust,Fear and neutral. Our primary method to solve this
problem involves extracting features from a set of labeled facial images, using the features and
the labels to train our model and then finally predicting the test data using that model. As far as
the dataset is considered we are using SFEW 2.0 database(from Static Facial Expression
Recognition sub-challenge pertaining to the more general Emotion recognition in the Wild
challenge).It contains screens from many Hollywood movies from varying genres. These
screens, however, are uncropped for the faces. There are 178 images for Anger,66 images for
Disgust,98 items for Fear,198 images for Happy,150 images for Neutral,172 images for Sad and
96 images for Surprise totaling 958 images for training. Also, there are 436 images across
different categories for Validation.Finally, there are 372 images for Testing giving a total of 1766
images in the dataset and a size of ~2.1 GB uncompressed.

Literature Survey

We first carried out literature survey of the techniques implemented on the dataset, especially
bayesian learning and SVM. The Bayesian learning approach allows us to classify the data
based on the a priori distribution of the training data. We studied the work of Cohen et al. and
Sebe et al. , which provided us with details of using the bayesian approach in emotion
recognition. Our aim is to finally classify the test data based on the distributions learned from the
training data. The easiest approach to this is the Naive Bayes method. While reading the
literature for the Naive Bayes method we came across two different distribution to model our
data on, namely, the Gaussian distribution and Cauchy distribution.The studies reported
accuracies upto 80% in person dependent results and 63% in person independent results in
case of Naive Bayes Classifier.

We studied the work of Hsu et al. and Melanie Dumas ,which provided us a comprehensive
study of using Support Vector Machines for emotion recognition. It comprises of implementing
SVM in two different ways as binary classification and multi-class classification for four different
cases of kernels namely linear, polynomial, radial basis and sigmoid. In binary classification, it
has ‘one against all’ classification for the 6 classes of emotions i.e we will select one class and
then classify each example as belonging to that class or not. We give positive 1 score if the
example belongs to that class and negative 1 score if the example does not belong to that class,
ultimately we take the mean of scores in all 6 classifications. In the case of multi-class
classification, it has ‘one against one’ classification for all the 6 classes, hence we generate 15
classifiers where each example is compared against two different classes and in each
classification, we increase the counter for that particular class and take the class with highest
counter value at the end. It uses the LIBSVM package for multi-class classification which
provides two formulations for SVM namely C-Support Vector Classification (C-SVC) and
nu-Support Vector Classification (nu-SVC). It then compares between these two formulations of
SVM.

In the research paper, it was found that binary classification proved better than multi-class
classification in all four cases of kernels. Also, in both the cases, linear kernel achieved better
results than other kernels. For the case of binary classification, all different cases of kernels led
to almost same results. In the case of multi-class classification, there is variation in accuracy for
using different types of kernels and the sigmoid ends up having largest accuracy in this case,

which is slightly higher than the linear kernel. Apart from this, in the multi-class classification
problem, C-SVC was observed to have better results than nu-SVC.

Methods and Techniques

In our first approach, we have implemented a two layer neural network that generates the
features which are given to our classifying algorithm. It has Rectified Linear Unit as activation
function, L-2 regulariser and decreasing learning rate with every best iteration. Initial learning
rate=0.5 and lambda=0.03, these were found by tuning on validation dataset and are in no
sense the most optimum choice.

In second approach, we used the train aligned faces of our dataset and extracted features
through Google Cloud Vision API. We wrote scripts in python to request Google Cloud Vision
API for features and then we did data cleaning using python scripts and obtained the features in
required form. The features we obtained are landmark points like x,y and z coordinates of
various parts of the face like upper left eye corner, lower right eye boundary, etc. We used
these features to train our classifying algorithms.

The classifying algorithms that we used are:

1 - Support Vector Machines
Support Vector Machines learn a hyperplane that classifies the data and also maximises the
margin. For multiclass classification, there are many ways to do it and here we have done it as
one against all classification. We have done analysis for various cases of kernels and tuned the
hyper-parameters C and gamma to achieve max accuracy.

2 - K Nearest Neighbours
In this approach we classify unlabeled data by looking at its K nearest neighbours and assigning
it the value of the majority label amongst those K neighbours. We varied the value of K to
achieve maximum accuracy which was achieved for K=6.

3 - Naive Bayes
Naive Bayes approach basically assumes the data to be coming from some probability
distribution(in our case we have assumed it to be Gaussian). The it tries to find these
distributions on the basis of the labeled data available to us. When a new point is to be
classifies we perform a MLE estimation of the label by using the Bayes formula. The most
important thing about the Naive Bayes classifier is that it assumes all the features to be

independent, so the overall conditional probability can be written as the individual conditional
probability of all the features.

4 - Decision Trees
A decision tree is a flowchart-like structure in which each internal node represents a "test" on an
attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of
the test and each leaf node represents a class label (decision taken after computing all attributes).
The paths from root to leaf represents classification rules.

5- Bagged Trees
Individual decision trees tend to overfit. Bootstrap-aggregated (bagged) decision trees combine
the results of many decision trees, which reduces the effects of overfitting and improves
generalization.

6- Linear Discriminant Analysis
Linear discriminant analysis (LDA) is a method used in statistics, pattern recognition and machine
learning to find a linear combination of features that characterizes or separates two or more classes
of objects or events. The resulting combination may be used as a linear classifier, or, more
commonly, for dimensionality reduction before later classification.

Experimental Results

 Google Cloud Vision API approach:

All the accuracies are reported are mean test accuracy for 5 iterations

SVM

● Linear Kernel: 39-40 percent (C = 3.0)
● Polynomial Kernel: 30-31 percent (C = 3.0)
● RBF Kernel: 37.9 percent (C =10^7)

Naive Bayes: 16 percent

K-NN: 25 percent (at K=6)

Decision Trees 31 percent

Bagged Trees 33 percent

Linear Discriminant Analysis 42 percent

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Features_(pattern_recognition)
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/Machine_learning

Conclusion

This project has been a really good learning experience for all of us. We worked on almost
everything from processed dataset selection to feature generation and then applying machine
learning algorithms. A lot of our time went out in selecting a relevant processed dataset. We
were searching for a pre trained CNN dataset so that we can directly do the part of generating
features from the CNN dataset but we could not find any pre trained CNN datasets. We
obtained one such dataset SFEW 2.0, but the processed featured in it were Pyramid Histogram
Oriented Gradients (PHOG) and Local Phase Quantisation (LPQ) features. We tried to
understand how we can use these PHOG and LPQ features for performing classification
through SVM and other methods but we could not succeed. So, we stopped searching for more
pre trained CNN datasets and decided to train CNN on our own. But we encountered some
problems during training CNN, so ultimately we ended up training our own neural network
made up of three layers on this dataset. Hence we all got a good exposure in terms of working
with Neural Networks though this project. Also, this project provided a good exposure in terms
of processing features obtained for purposes of effective classification. The Google Cloud
Vision API generated a lot of features and then we removed many features which were not
required.

Apart from it, this project we applied many concepts of machine learning learnt in course and it
gave a practical experience of dealing with problem of high bias, imbalanced data,etc.

Acknowledgements

We would like to express our gratitude to Prof. Piyush Rai for his guidance and support. His
enthusiasm is contagious and motivated us to explore more. We would also like to thank
Abhinav Dhall, Roland Goeke, Simon Locey and Tom Gedeson for the permission to use SFEW
2.0 dataset.

References

Hemalatha, G., and C. P. Sumathi. "A study of techniques for facial detection and expression classification."
International Journal of Computer Science and Engineering Survey 5.2 (2014): 27.

Gil Levi and Tal Hassner, Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary
Patterns, Proc. ACM International Conference on Multimodal Interaction (ICMI), Seattle, Nov. 2015

Sebe, Nicu, et al. "Emotion recognition using a cauchy naive bayes classifier." Pattern Recognition, 2002.
Proceedings. 16th International Conference on. Vol. 1. IEEE, 2002.

Cohen, Ira, et al. "Learning Bayesian network classifiers for facial expression recognition both labeled and unlabeled
data." Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on.
Vol. 1. IEEE, 2003.

Dumas, Melanie. "Emotional expression recognition using support vector machines." Proceedings of International
Conference on Multimodal Interfaces. 2001.

Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. "A practical guide to support vector classification." (2003):
1-16.

